糖心视频

January 28, 2015

Large-scale analytics system for predicting major societal events described in Big Data Journal

Credit: Mary Ann Liebert, Inc., publishers
× close
Credit: Mary Ann Liebert, Inc., publishers

EMBERS is a large-scale big data analytics system designed to use publically available data to predict population-level societal events such as civil unrest or disease outbreaks. The usefulness of this predictive artificial intelligence system over the past 2 years is reviewed in an article in Big Data.

In the article "," Andy Doyle and coauthors, CACI, Inc. (Lanham, MD), Virginia Tech (Arlington, VA), and BASIS Technology (Herndon, VA), describe the structure and function of the Early Model Based Event Recognition using Surrogates (EMBERS) system. They describe EMBERS as a working example of a streaming architecture that processes large volumes of social media data and uses a variety of modeling approaches to make predictions.

"EMBERS represents a significant advance in our ability to make sense of large amounts of unstructured data in an automated manner," says Big Data Editor-in-Chief Vasant Dhar, Co-Director, Center for Business Analytics, Stern School of Business, New York University. "The authors present an architecture that provides a scalable method for dealing with large streams of social media data emanating from Twitter. Although the focus of the paper is on predicting social unrest globally, the methods should be usable for processing these type of data for a variety of applications."

More information: The article is available free on the website.

Provided by Mary Ann Liebert, Inc

Load comments (0)

This article has been reviewed according to Science X's and . have highlighted the following attributes while ensuring the content's credibility:

Get Instant Summarized Text (GIST)

This summary was automatically generated using LLM.