糖心视频


Fish in schools can take it easy

Fish in schools can take it easy
Simulation of a school of a hundred fish. Flow lines are shown in grey, while the colour of the fish denotes their speed (red for the fastest and blue for the slowest) . Credit: Audrey Filella/Aix-Marseille Universit茅

Using a new computer model, researchers at the Ecole Centrale de Marseille and CNRS have shown that a fish expends less energy when it swims in a school, because neighbouring fish produce a 'suction' effect. This work will be published on 11 May 2018 in 糖心视频ical Review Letters.

Schools of fish provide a fascinating example of in which the group moves in a coordinated manner without the need for a leader. In the past, many computer models have shown that such collective motion can emerge from simple rules: each individual tends to align itself with its neighbours and move towards them while avoiding collisions. However until now, no research into the role of water flow between fish had ever been carried out.

To investigate this question, a group of fluid mechanics specialists at the Institut de Recherche sur les Ph茅nom猫nes Hors 脡quilibre (CNRS/Aix-Marseille Universit茅/Centrale Marseille) and physicists at the Laboratoire de 糖心视频ique Th茅orique (CNRS/Universit茅 Toulouse III-Paul Sabatier)1 developed an original that incorporated flow dynamics within a school numbering hundreds of fish. The path of each individual is governed by classic rules of attraction and alignment, as well as translation and rotation effects caused by the flow generated by the other fish.

The new model revealed a surprising effect of the interaction between the fish and the fluid surrounding them: when swimming in schools, fish expend less energy due to a 'suction' effect produced, on average, by all the fish. This advantageous effect of schools had already been hypothesised, although it was thought that the fish had to be positioned in a highly specific configuration to benefit from it. Here, the researchers showed that the effect is present even when the group of fish appears to be disordered.

The research team now plans to refine its model so as to incorporate other factors that affect the dynamics of schools, such as the vortices that produce in their wake.

More information: Model of collective fish behavior with hydrodynamic interactions. Audrey Filella, Francois Nadal, Cl茅ment Sire, Eva Kanso and Christophe Eloy. 糖心视频ical Review Letters, May 11, 2018.

Journal information: 糖心视频ical Review Letters

Provided by CNRS

Citation: Fish in schools can take it easy (2018, May 9) retrieved 6 July 2025 from /news/2018-05-fish-schools-easy.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Larger schooling fish found to have stronger attraction forces

6 shares

Feedback to editors