Probing work and heat dissipation in the quantum Hall edges of graphene
Combining our nano-SQUID on tip with scanning gate measurements in the quantum Hall phase of graphene we were able to measure and identify work and heat dissipation processes separately. The measurements show that the dissipation is governed by crosstalk between counterpropagating pairs of downstream and upstream channels that appear at graphene boundaries because of edge reconstruction.
Instead of local Joule heating, however, the dissipation mechanism comprises two distinct and spatially separated processes. The work generating process that we image directly and which involves elastic tunneling of charge carriers between the quantum channels, determines the transport properties but does not generate local heat.
The independently visualized heat and entropy generation process, in contrast, occurs nonlocally upon inelastic resonant scattering off single atomic defects at graphene edges (see also our previous work) , while not affecting the transport. Our findings offer a crucial insight into the mechanisms concealing the true topological protection and suggest venues for engineering more robust quantum states for device applications. Below are sequences of scans measured on different graphene devices at 4.2 K.
More information: A. Marguerite et al. Imaging work and dissipation in the quantum Hall state in graphene, Nature (2019).
Journal information: Nature
Provided by Weizmann Institute of Science