糖心视频


Researchers catch protons in the act of dissociation with ultrafast 'electron camera'

Researchers catch protons in the act of dissociation with SLAC's ultrafast 'electron camera'
Irradiating ammonia鈥攚hich is made up of one nitrogen and three hydrogens鈥攚ith ultraviolet light causes one hydrogen to dissociate from the ammonia. SLAC researchers used an ultrafast "electron camera" to watch exactly what that hydrogen was doing as it dissociated. The technique had been proposed, but never proven to work, until now. In the future, researchers could use the technique to study hydrogen transfers鈥攃ritical chemical reactions that drive many biological processes. Credit: Nanna H. List/KTH Royal Institute of Technology

Scientists have caught fast-moving hydrogen atoms鈥攖he keys to countless biological and chemical reactions鈥攊n action.

A team led by researchers at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University used ultrafast electron diffraction (UED) to record the motion of hydrogen atoms within ammonia molecules. Others had theorized they could track hydrogen atoms with electron diffraction, but until now nobody had done the experiment successfully.

The results, , leverage the strengths of high-energy Megaelectronvolt (MeV) electrons for studying hydrogen atoms and proton transfers, in which the singular proton that makes up the nucleus of a hydrogen atom moves from one molecule to another.

Proton transfers drive countless reactions in biology and chemistry鈥攖hink enzymes, which help catalyze , and proton pumps, which are essential to mitochondria, the powerhouses of cells鈥攕o it would be helpful to know exactly how its structure evolves during those reactions. But proton transfers happen super-fast鈥攚ithin a few femtoseconds, one millionth of one billionth of one second. It's challenging to catch them in action.

One possibility is to shoot X-rays at a molecule, then use the scattered X-rays to learn about the molecule's structure as it evolves. Alas, X-rays only interact with electrons鈥攏ot 鈥攕o it's not the most sensitive method.

To get to the answers they were looking for, a team led by SLAC scientist Thomas Wolf, put MeV-UED, SLAC's ultrafast camera to work. They used gas-phase ammonia, which has three attached to a . The team struck ammonia with , dissociating, or breaking, one of the hydrogen-nitrogen bonds, then fired a beam of electrons through it and captured the diffracted electrons.

Not only did they catch signals from the hydrogen separating from the nitrogen nucleus, they also caught the associated change in the structure of the molecule. What's more, the scattered electrons shot off at different angles, so they could separate the two signals.

"Having something that's sensitive to the electrons and something that's sensitive to the nuclei in the same experiment is extremely useful," Wolf said. "If we can see what happens first when an atom dissociates鈥攚hether the nuclei or the electrons make the first move to separate鈥攚e can answer questions about how dissociation reactions happen."

With that information, scientists could close in on the elusive mechanism of proton transfer, which could help to answer myriad questions in chemistry and biology. Knowing what protons are doing could have important implications in structural biology, where traditional methods like X-ray crystallography and cryo- have difficulty "seeing" protons.

In the future the group will do the same experiment using X-rays at SLAC's X-ray laser, the Linac Coherent Light Source (LCLS), to see just how different the results are. They also hope to up the intensity of the electron beam and improve the time resolution of the experiment so that they can actually resolve individual steps of proton dissociation over time.

More information: Elio G. Champenois et al, Femtosecond Electronic and Hydrogen Structural Dynamics in Ammonia Imaged with Ultrafast Electron Diffraction, 糖心视频ical Review Letters (2023).

Journal information: 糖心视频ical Review Letters

Citation: Researchers catch protons in the act of dissociation with ultrafast 'electron camera' (2023, October 6) retrieved 27 August 2025 from /news/2023-10-protons-dissociation-ultrafast-electron-camera.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Resolving hydrogen atoms in small organic molecules depending on chemical bond type

2760 shares

Feedback to editors